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Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits
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We show that laser pulse shaping techniques can be applied to tailor the ultrafast temporal response of
localized and propagating optical near fields in resonant optical antennas (ROAs) and plasmonic transmission
lines, respectively. Using finite-difference time-domain simulations followed by Fourier transformation, we
obtain the impulse response of a nanostructure in the frequency domain, which allows obtaining its temporal
response to any arbitrary pulse shape. To illustrate the potential of the method we demonstrate deterministic
optimal temporal pulse compression in ROAs with reduced symmetry, in a plasmonic two-wire transmission
line, and in a prototype plasmonic circuit combining propagation effects and local resonances. The method
described here will be of importance for the coherent control of field propagation in nanophotonic structures

and light-induced processes in nanoscopic volumes.
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Spatiotemporal control of strongly enhanced optical fields
with nanometer and femtosecond resolutions is a key chal-
lenge in nano-optics.' In terms of spatial confinement of
light, much effort has recently been devoted to study the
optical resonant behavior of plasmonic nanostructures,’
among which resonant optical antennas (ROAs) excel in in-
tensity enhancement (~ 1000 times) (Refs. 7 and 8) and spa-
tial confinement (10 nm characteristic length). Well-designed
ROAs govern the radiation of emitters in their vicinity®!!
and provide the basis for enhanced single-photon
sources, %2 antenna-enhanced local spectroscopy,*!> and a
broad range of applications.'¢~' Structures that are able to
guide optical fields with deep subwavelength mode extension
have also been explored extensively?®-?? in view of possible
plasmonic circuitry.>*> Coherent control of near fields by
phase, amplitude, and polarization pulse shaping in plas-
monic nanostructures has recently been theoretically pro-
posed?®3! and experimentally realized.’>*3 Applying the
concepts of coherent spatiotemporal control for tailoring the
near-field response of plasmonic nanostructures entails un-
derstanding of how the resonant character of nanostructures
and propagation effects determine the temporal response in a
chosen point in space.

Here we propose a way of using the finite-difference time-
domain (FDTD) method to simulate the near-field response
of a nanostructure to arbitrarily shaped laser pulses. We sug-
gest to perform a time-domain calculation only once, fol-
lowed by a Fourier transformation to the spectral domain
from which the impulse response of the structure is calcu-
lated. Using this impulse response, the near-field responses
to any desired pulse shape can be obtained by a multiplica-
tion in the spectral domain. Since our approach is based on
the linear Maxwell’s equations, here solved by means of the
FDTD algorithm, such calculations are generally valid re-
gardless of the nanostructure shape. Compared to previous
studies®® we avoid repeating costly simulations for each new
pulse shape. This method, therefore, provides a powerful tool
to explore the effects of pulse shaping in nano-optics. In
general, the near-field optical response of any complex struc-
ture can be described in terms of combinations of two fun-
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damental coupling effects, i.e., (i) coupling of localized reso-
nances and (ii) continuous propagation of guided modes with
dispersion. We, therefore, demonstrate the power of this ap-
proach by considering two structures, a displaced-gap linear
dipole antenna and a plasmonic transmission line, which rep-
resent the two fundamental coupling effects, as well as an
optical circuit combining both effects.

First, we show that by applying pulses with an opposite
phase with respect to the impulse response, optimal temporal
compression is achieved in asymmetric ROAs. We then dem-
onstrate that laser pulse shaping can also be used to compen-
sate and control pulse broadening due to dispersion in a
nanosize plasmonic two-wire transmission line excited via a
ROA.3* We, therefore, extend the classical experiments of
adaptive pulse compression®-¢ and the concept of energy
localization in random nanostructures®’3! to the determinis-
tic spatiotemporal control of nano-optical fields. Although in
the present paper we concentrate on the possibility to achieve
temporal compression, our technique is naturally not limited
to time domain but can also be used to deterministically
tailor arbitrary temporal and spectral shapes of ultrafast near
fields, which is a prerequisite for coherent control at the nan-
ometer scale as well as for the operation of nanophotonic
integrated circuits and related applications.

Efficient ROAs can be realized using noble-metal nano-
rods. The plasmon resonances of individual rods are deter-
mined by their dimensions and dielectric function® or equiva-
lently by length-dependent Fabry-Pérot resonances of a
plasmon wave* propagating with an effective wavelength’
along the rod and being reflected at its ends. While a single
rod may be considered a monopole antenna,'! dipole anten-
nas are formed by aligning two nanorods end to end, thus
creating a very small feed gap where optical fields are con-
centrated and enhanced.® An x-polarized 10 fs laser pulse
centered at 711 nm is used as a default source in the FDTD
simulations®’ (see Fig. 1). The source is a focused Gaussian
beam (numerical aperture 1.0) which is injected from within
the silica half space with perpendicular incidence on the
silica-air interface. Since only x-polarized excitation is con-
sidered, its electric field may be expressed as a scalar,
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FIG. 1. (Color online) Time-dependent electric fields of the de-
fault excitation source (black, top) and the corresponding near-field
response (red, bottom) at the feed gap center of a dipole antenna
with a displaced gap. Antenna dimensions are 20X 20X 170 nm?
including a 10 nm gap, which is shifted 30 nm away from the
antenna center. The displaced gap results in arm lengths of 110 and
50 nm as sketched in the inset.

S(1) = Soe™ 1L =0T inl (s — 1)1, (1)

where S is the peak amplitude of the source electric field, ¢,
is the time offset of the pulse, Az is the pulse duration, and @
is the carrier angular frequency. The default source has a flat
spectral phase (no chirp). The nanostructures to be investi-
gated are made of gold on silica substrates in air. We use the
multicoefficient model?’ to fit the dielectric functions of gold
and silica.’®3° Structures are discretized using mesh steps in
X, v, and z directions of 1 nm to obtain reliable results with
reasonable simulation time. All the structures have faces and
edges parallel to the rectangular mesh grid. We, therefore,
exclude the influence of spurious resonances due to staircas-
ing effects. All boundaries of the total simulation cube con-
tain 12 perfectly matched layers and are set to be more than
400 nm away from the metal structure surfaces to avoid ab-
sorption of near fields.

We first study the temporal response of a dipole antenna
with a displaced gap, i.e., an antenna consisting of two gold
nanorods with the same cross section (20X 20 nm?) but dif-
ferent length (110 and 50 nm) separated by a feed gap of 10
nm as depicted in the inset of Fig. 1. FDTD simulations
provide the time-dependent electric fields E(z) in the vicinity
of the structure, e.g., in the feed gap (bottom red trace in Fig.
1). Both, the source field S(¢) (top black trace in Fig. 1) and
the corresponding response of the structure are Fourier trans-
formed to yield the respective quantities S(w) and E(w) in
the frequency domain. The so-called impulse response func-
tion for any desired point r in the vicinity of the structure is
now obtained by normalizing the response of the structure
with the source spectrum

E(w,r)
S(w)

(2)

Eimpulse(wa I') =

Note that the electric fields are vectors, therefore, near-field
depolarization effects are taken into account. The validity of
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FIG. 2. (Color online) (a) Source-independent impulse spectra
(black solid line) and spectral phase (red dashed line) of isolated 50
nm and 110 nm gold nanorods recorded at a point on the long axis
of the rod, 5 nm from its end in air. (b) Source-independent impulse
spectrum (black solid line) and spectral phase (red dashed line) of
the respective displaced-gap antenna consisting of the two rods in
(a), recorded at the center of the 10 nm feed gap. The amplitude
scale in (b) is about 30 times larger than in (a) due to antenna
enhancement. (¢) Spectrum (black solid line) and phase (red dashed
line) of a new source pulse. The new phase is shaped as the oppo-
site of the displaced-gap antenna spectral phase shown in (b). All
amplitudes are normalized to unity.

this equation is independent of the observation position.*’

However, in the present example of a displaced-gap linear
dipole antenna, the field component along the antenna (E,)
dominates in the feed gap.® Since the frequency dependence
due to the finite pulse length of the source has been removed,
the impulse spectrum reveals the spectral response of the
structure to a JS-function pulse. It, therefore, serves as a
Green’s function in the frequency domain. The new local
response E, . (w,r) to any chosen source pulse shape
Sshapea(®) can be simply obtained by multiplying the impulse
response with the new source in the spectral domain,

Enew(war) = Sshaped(w)Eimpulse(w’r) . (3)

A higher-order nonlinear spectral phase of the impulse re-
sponse directly reveals a possible chirp introduced by the
nanostructure. In the case considered here, each individual
antenna arm exhibits its own longitudinal plasmon resonance
with the expected harmonic-oscillator behavior of the phase.
The impulse spectrum of a displaced-gap antenna shows two
clear resonance peaks due to asymmetry.*! These two peaks
around the angular frequencies 2.02 fs~! (930 nm) and
2.85 fs~! (659 nm) correspond to 110 and 50 nm single gold
nanorod resonances, whose impulse spectra and phases are
shown in Fig. 2(a). The longer rod resonance is shifted to the
red and shows a stronger near-field enhancement due to the
fact that the longitudinal plasmonic resonance is redshifted
and becomes stronger as the aspect ratio of the rod
increases.” We observe that for a single rod excited by lin-
early polarized light along the long axis [see Fig. 2(a)] and
also for a symmetric dipole antenna (data not shown) the
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FIG. 3. (Color online) (a) New response spectrum (black solid
line) and spectral phase (red dashed line). The amplitude is normal-
ized to unity. (b) Temporal intensity profiles of the original response
(black dotted line) and of the new response evaluated directly from
Eq. (3) followed by an inverse Fourier transformation (blue dashed
line). For comparison, we also plot the square of the real part of the
electric field (red solid line) obtained from a full FDTD simulation
with the shaped source shown in Fig. 2(c). All intensities are nor-
malized to the maximum intensity of the original response.

spectral phase around the resonance is linear to a good
approximation,*? thus negligible chirp is introduced. This is
supported by recent experiments on symmetric bow-tie an-
tenna arrays.'®

While in view of applications this is an important finding
in itself, we also observe that already the presence of a sec-
ond resonance due to an asymmetric feed gap, not to speak
of more complicated structures with more resonances, intro-
duces higher-order spectral phase behavior as illustrated in
Fig. 2(b). But since the impulse response of the structure is
known, it is possible to deterministically precompensate any
pulse broadening by adapting the source pulse shape such
that its spectral phase is the opposite of the impulse response
spectral phase as illustrated in Fig. 2(c). As a result, the
response of the structure to the so-modified source exhibits a
flat spectral phase and is optimally compressed in time.3>-¢
Most importantly, the structure’s response to any chosen
source pulse shape can be simply obtained by multiplying
the impulse response with the new source in the spectral
domain without rerunning expensive FDTD simulations.
This feature will be particularly useful for finding optimal
pulse shapes when using evolutionary algorithms.

Applying the shaped pulse to the structure, the dispersion
is precompensated and a new response with a flat phase is
obtained as shown in Fig. 3(a). The new source excites both
resonances due to the broad bandwidth of the ultrashort
pulse. This results in the main peak at w=2.85 fs™' and a
shoulder around w=2.45 fs~'. Since the spectral phase is
flat, the temporal broadening is removed. As a result, the new
response is compressed in time and its temporal width is
finally limited by the Q factor of the relevant plasmon reso-
nance provided the excitation pulse is sufficiently short. Fig-
ure 3(b) shows the original response along with the temporal
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FIG. 4. (Color online) Left panel: sketch of the transmission line
and the observation points. Two long gold nanowires with
20X 20 nm? cross section and 10 nm separation are attached to two
arms of a 20X 20X 190 nm? antenna. The red dashed circle de-
notes the excitation area. Observation: point A is located at the feed
gap center, while points B-D are shifted in the +y direction from
point A by 1000, 2000, and 3000 nm, respectively. Right panel: (a)
normalized temporal intensity profiles recorded at points A (red), B
(blue), C (green), and D (pink) obtained with the default source
(black); (b) normalized original (black thin line) and new (red thick
line) temporal intensity profiles of the source (dashed) and the re-
sponse (solid) at point D.

intensity profile of the well-compressed new response ob-
tained by Eq. (3) and inverse Fourier transformation. The
peak intensity is enhanced by a factor of more than 1.5. For
comparison, here we also plot the square of the real part of
the electric field obtained from a full FDTD simulation with
the shaped source shown in Fig. 2(c). The perfect coinci-
dence between the full FDTD simulation and the much faster
evaluation of Eq. (3) demonstrates the validity of our ap-
proach. In all other examples we only use Eq. (3). Because
both resonances of the structure are excited, the compressed
temporal profile in Fig. 3(b) is not a Gaussian but has shoul-
ders. Although we determine the linear response, the peak
intensity enhancement as observed in the present example of
an asymmetric dipole antenna will be of importance for non-
linear phenomena occurring in the antenna feed gap®* or
higher-order harmonic signals sensitive to the local field
intensity.!04?

Further, we study a two-wire plasmonic transmission
line.>* The equivalent circuit for the transmission line is a
chain of interacting resonant circuits each representing an
infinitely short section of the transmission line.** The effect
of these interacting resonant circuits is that excitations of
different frequencies propagate at different velocities along
the transmission line, therefore, causing dispersion. To dem-
onstrate the ability of manipulating the temporal profile of a
signal traveling down the transmission line, we attached a
symmetric dipole antenna to it,*** as shown in Fig. 4. A
symmetric antenna is used here to efficiently excite the fun-
damental guided mode without introducing significant chirp
itself. Upon illumination of the dipole antenna, the field is
first spatially confined and enhanced in the feed gap and then
travels as a strongly confined quasi-TE mode between the
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two wires of the transmission line. We have recently found
that these nanotransmission lines at optical frequencies be-
have quite similar to those in the rf regime.>* Concepts of
classical electronic circuits, e.g., impedance matching, are
well applicable.>*46 A propagating pulse along such trans-
mission line is expected to be broadened by group-velocity
dispersion*’ and phase modulation in analogy to effects also
known from optical fibers.*® As shown in Fig. 4(a), the tem-
poral responses obtained at different positions along the
transmission line show broadening which is increasing with
the distance traveled. This temporal broadening, along with
Ohmic losses, rapidly diminishes the peak intensity of the
signal. By applying a phase-shaped pulse to the incoupling
antenna using the method outlined above, the signal is re-
compressed at point D and the field intensity is improved by
a factor of 1.5 as shown in Fig. 4(b). In addition to the
compression at point D, the new source shows a broader
temporal intensity profile and a lower peak intensity with the
same pulse energy. Since the local field is highly enhanced in
the feed gap and easily exceeds the damage threshold,”$16:4
this broadened excitation pulse may prevent the structure
from being damaged by the source. So far, we have shown
that our approach can be used to compress both localized and
propagating optical near fields. As the complexity of the in-
vestigated structures increases so does the number of reso-
nances that determine the response of a structure to an exci-
tation with a short laser pulse, causing a stronger temporal
broadening of the near field. As an example of a more gen-
eral case, we apply our method to a complex structure
(sketched in Fig. 5) consisting of a displaced-gap receiving
antenna connecting to a finite-length transmission line with
two branches terminated by two emitting antennas. This
structure represents a prototype photonic circuit in which
signals suffer from temporal broadening due to both coupling
of localized resonances and dispersion of propagating fields
as is the case in any general plasmonic structure. As shown
in Figs. 5(a) and 5(b), broadened signals can determinis-
tically be recompressed in time regardless of the structure’s
complexity.

In conclusion, the FDTD method is useful to simulate the
impulse response of plasmonic nanostructures with multiple
resonances. Responses to arbitrary source pulse shapes can
be obtained, without rerunning expensive FDTD simulations,
from a simple multiplication of a new source and the impulse
response in the spectral domain followed by an inverse Fou-
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FIG. 5. (Color online) Left panel: sketch of an optical circuit
and the observation points. The circuit consists of three antennas
and a finite-length plasmonic transmission line with a 7 branching.
All wires and antennas have a 20 X 20 nm? quadratic cross section
and 10 nm gap. Dimensions are indicated in nanometers. The red-
dashed circle denotes the excitation area. Observation: points E and
F are located at the feed gap centers of the left and right antennas,
respectively. Right panel: normalized original (black solid line) and
new (red dashed line) temporal intensity profiles of signals recorded
at (a) point E and (b) point F.

rier transformation. The validity of this approach is demon-
strated by a comparison to full FDTD simulations. The tem-
porally broadened localized fields of an optical antenna or
propagating transmission line modes can be recompressed by
deterministic shaping of the source spectral phase thus en-
hancing the peak intensities in the structure. This method is
general and will be of importance for future experiments
involving coherent control of field propagation in nanopho-
tonic devices and light-induced processes in nanometer scale
volumes. In addition to spatiotemporal compression of local
fields, the method presented here allows optimizing the tem-
poral response of real optical antennas and more complex
structures which deviate from the ideal shape and, therefore,
sets the basis for future subwavelength coherent control ap-
plications.
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